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APPLICATION OF SUPERSONIC VORTEX-FLOW THEORY TO THE

DESIGN OF SUPERSONIC IMPULSE COMPRESSOR-

OR TURBINE-BLADE SECTIONS

By Emanuel Boxer, James R. Sterrett, and John Wlodarski

SUMMARY

A method for designing shock-free supersonic impulse compressor

and turbine blades in which the blade passage is essentially the space

between two concentric circles is presented. Since the shock-free super-

sonic flow between two concentric circles is a vortex flow, the problem

is one of designing an entrance to the circular-arc passage which will

convert the uniform entering flow to the required vortex distribution

and vice versa at the exit. The coordinates of many transition arcs

have been computed and are included in tabular form. The resulting

sections are all related to one another so that changes in the design

variables can be investigated independently in cascade and the perform-

ance of a section for particular rotor conditions may be deduced from

tests of representative sections.

Three methods of increasing the thickness, particularly near the

leading and trailing edges, are presented although not experimentally

investigated. The passage shape was investigated for its ability to

start supersonically and the maximum design inlet Mach number for

starting was determined for given vortex-blade parameters.

Cascade test results of four blade passages designed to turn the

flow 120 ° at an inlet Mach number of 1.57 showed reasonable agreement

with predicted surface static pressures. The stagnation pressure

recovery was approximately 87.5 percent for all sections.

INTR ODUCT ION

At the turn of the century, the newly realized potentialities of

steam turbines led, among other things_ to intensive empirical research

into the proper shaping of impulse turbine blades or buckets for use



with supersonic inlet velocities. (See reference i.) The bucket shapes
developed at that time, when little was knownabout supersonic flow other
than the existence of the Prandtl-Meyer and Rankine-Hugoniot relations,
are still the basis for design of modern impulse steam-turbine buckets
since no premiumhas been placed upon achieving the ultimate in
performance.

The present-day revolution in aircraft propulsion has brought about
a demandfor high-performance compressors and turbines and has instigated
an intensive research in the field of hlgh-pressure-ratio compressors
and turbines with large flow-handling capacities, small frontal area,
light weight, and high efficiency. With the development of the theory
of the supersonic axial-flow compressor by Kantrowitz (reference 2) a

new field of great promise in compressor research was opened. In par-

ticular, the entirely supersonic rotor and diffusing stator combination

suggested by Kantrowltz and discussed by Ferri (reference 3) holds

promise of pressure ratios per stage of 6 to lO with efficiencles

estimated from two-dimensional cascade tests to be between 70 and 80 per-

cent. Part of the problem to be overcome for compressors of this type

is the design of efficient rotor-blade sections to turn the air Super-

sonically through large angles with very little or no reaction (that is,
static-pressure rise] _ a requirement identical to that for efficient

impulse turbine buckets. The understanding of supersonic flow has

progressed rapidly in recent years. Liccini (reference 4) has demon-

strated that turning passages very much more efficient than those cited

by Stodola are now possible. The analytical determination of the blade

shape for each design by the graphical characteristic method of solution

and check testing in cascade, however, is laborious. The purpose of

this paper is to present an anlytical method for the design of two-

dimensional related sections such that the selection of a blade for

particular rotor conditions may be made quickly and easily and its

performance deduced from tests of representative sections in cascade.

The principal part of the turning, in what are called vortex

impulse sections, is accomplished by concentric streamlines with a

vortex-type distribution of velocity for which an analytical potential-

flow solution of the equation of the characteristic or Mach lines has

been developed by A. Busemann. A transition section at the leading

part is used to set up this vortex flow and is duplicated at the rear

of the symmetrical blade to return the flow to the required uniform

exit condition. The resulting sections are related to one another so

that changes in the design variables, that is, design inlet and exit

Mach number, blade surface Mach numbers 3 and turning angles can be

investigated independently in cascade. Inasmuch as most practical

vortex sections contract the flow, it was necessary to investigate

analytically the supersonic starting problem. In addition, several

methods of thickening the vanishingly thin leading and trailing edges

_L
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which are a result of the assumption of shock-free flow are suggested

for practical compressor-blade application.

The effects of the boundary layer upon the potentlal-flow solution

were obtained experimentally by several cascade tests of typical impulse

blade sections at an inlet Mach number of 1._7.

SYMBOLS

A

A*

a

a*

C L

Cp

C

C*

G*

K

area

area when flow is sonic (for isentropic flow)

speed of sound

speed of sound at point in flow for which the Mach number

equals 1.0

lift coefficient

specific heat at constant pressure

reduction of maximum flow rate due to curvilinear flow

nondimenslonal chord (chord/r*)

nondimensional blade spacing (2_r/nr*)

nondimensional vortex constant

k_

M

M*

m

m/r*

n

P

VR*

a o

- 1

Mach number (V/a)

nondimensional velocity ratio

rate of mass flow

mass-flow parameter

number of blades in a rotor

static pressure

(V/a*)
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P

q

r

r*

R

R*

s

t

T

U

U

V

V

Vma x

X _

y*

7

5

e

#

V

stagnation pres sure

vortex-flow parameter

radius from center of rotation of a rotor

radius of sonic velocity streamline in vortex field

radius in vortex field

nondimensional radius in vortex field (R/r*)

radius ratio (R*/RI*)

projection of added thickness normal to axial direction

(fig. 9(b))

temperature

rotational velocity of rotor

component of velocity in x direction

component of velocity in y direction

velocity

maximum velocity of flow for given stagnation conditions

nondimensional distance in x direction (x/r*)

nondimensional distance in y direction (y/r*)

inlet-flow angle_ angle between relative flow and normal

to rotor leading edge

ratio of specific heats

leading-edge wedge angle

turning angle

Mach angle

supersonic property anglej angle through which flow must

expand from M = i.O to given Mach number
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P

O

¢

¢,

P3/Po

Subscripts

a

e

i

1

u

0

s

2

ratio of average outlet velocity to inlet velocity

density

solidity (C*/G*)

angle between vortex radius vector and x axis_ measured

positive clockwise

direction of flow in vortex field_ measured positive clock-

wise from x axis

stagnation pressure recovery

axial direction

entrance condition

undisturbed inlet condition

lower or concave surface

upper or convex surface

stagnation

sonic

exit condition

A prime mark denotes conditions after normal shock.

Blade-Section Development

To turn a gas flow through the large angles necessary in supersonic

compressor- or turbine-blade passagesj a vortex type of flow can be

utilized if the inlet surface is properly shaped to convert the uniform

inlet velocity into that corresponding to vortex flow and vice versa at

the exit. The desirability of using a vortex type of flow is evident

when it is realized that the maximum loading for a given peak surface

pressure is achieved by uniform upper and lower surface pressures attained

through the use of vortex flow. The labor involved in obtaining a solu-

tion for a blade profile is reduced because for vortex flow the equation

of the Mach lines can be found and_ as will be shown_ only the transition

C ONF IDE NT_
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arcs need to be determined. The fact that the blades so developed are
part of a related family is advantageous.

Supersonic vortex-flow theory.- As is well known, (for example, see
reference 5), supersonic vortex flow is an irrotational flow the stream-

lines of which are concentric circles; with a constant velocity along

any particular streamline. The velocity in turn varies inversely with
radius.

The general vortex equation

can be rewritten

VR = Constant

C onst ant
M'R* = = 1.0

a'r*

Restricting the flow to the supersonic realm will limit R* to values

_- and 1.0 with a flow variation shown schematically in
1

between $ 1

figure 1. Since the magnitude of the velocity and its direction is

known at any point, the inclination of the Mach waves through any given

point may be determined as a function of R* as shown subsequently.

Since the velocity is normal to the radius (see fig. 2), the Mach
+

wave inclination is _' + _ or _ + _ _ B where

= arc sin
M

and

M = .I- 2M'2

7+i) - 1)M*2

+ + I)R.2 - - i)
so that the Mach wave inclination is _ + _ _ arc sin _ 2

The equation of the Mach lines may be found by integration since the

slope is a function of _ and R*. The resulting integral equation has

been solved in terms of M*. Rather than develop the direct solution_

_CONFIDE NTIAL-_



use maybe madeof the fact that the Mach lines are characteristic lines
and that a functional relation between velocity direction _' and
velocity ratio M* exists along a characteristic llne (equations 81
and 89, reference 6). Since M* = _,, the equation of Mach lines can
be written in polar form as

= -2 [_ --_C_ sin --*2 l) +

arcolnE7  }+Cons an 

The foregoing development is based upon work done by A. Busemarm

(unpublished). The Nach wave network in the supersonic vortex field

for 4 ° incremental changes in the value of the constant is shown in

fine 3 as originally prepared by Busemann.

Generation of transition arcs.- The flow entering a blade section

assumed to be uniform, supersonic, and of constant entropy must be

deflected by uniquely shaped boundaries to set up the desired vortex-

flow pattern. In the following expositlon_ it is convenient to discuss

the flow in terms of flow direction, _', and the property angle, v.

Tables of functions for two-dimenslonal flow of a perfect gas have been

published in many texts_ but, for ready reference, the values of M#

M*, _, and R* as functions of v for W = 1.40 are presented in
table I.

The inlet value of ve must be reduced by means of compression

waves to the selected value of vI on the concave surface and generally

increased through expansions to the value vu on the convex surface of

the vortex part of the blade. Along a line where _' = O, compression

waves (shown in fig. 4 as solid lines) have a negative slope and expan-

sion waves (shoe dashed), a positive one. The flow (see fig. 4) must

be normal to the radial line through the initial point of the most

clockwise-spaced concentric arc. Since both surfaces must turn the

flow an equal amount,

Ve - Vl + _ = Vu - Ve

or

A_ = vI + vu - 2ve



where _ is the displacement angle between the initial points of the
concentric arcs.

If the start of concave circular arc is assumedto be on the
y* axis, then the true vortex flow is boundedby the circular-arc

surfaces aod the expansion wave through _i' = 0 on the concave surface

and the compression wave which passes through _u' = 2_ on the convex

surface up to their point of intersection. Along these principal char-

acteristic lines (heavier lines in fig. 4), the slope of the crossing

characteristic or Mach wave and the flow direction is known at every

point. There are expansion waves of total strength vu - ve crossing

the principal compression characteristic and total compression wave

strength of ve - vI crossing the principal expansion characteristic.

From the theory of characteristics as applied to supersonic flow,

the direction and velocity of the flow are known to vary only across a

characteristic line. When characteristics are given a finite strength,

the solution of a flow problem takes the form of a network of quadri-

laterals. The flow parameters within each quadrilateral are assumed

constant. Thus, in the present problem_ the transition arcs are

generated by stralght-line elements parallel to the flow within the

adjacent quadrilateral or triangle formed by the principal and crossing

characteristics and the transition arc itself starting from the circular

arcs at _!' = 0 and _u' = 2_ and proceeding in the counter-clockwise

direction until parallel with the inlet flow. Where necessary, for

examp!e_ nonsymmetrical sections_ the exit transition arcs at the trailing

surfaces of the blade are generated in a like manner about a radius

labeled _i' = 0 with the exception that signs of all flow angles _'

are changed.

An illustrative example of a particular design is shown in figure 4

for an assumed inlet ve of 8° and v I and vu equal to 0° and 20 °,

respectively. In each bounded region of flow there appear two numbers 3

the upper one of which is the flow direction _'_ the lower one the

property angle v. The strength of each wave is taken to be 2° so that

the transition arc is composed of straight-line elements deflected 2° at

the intersection with a characteristic line.

The coordinates of a number of transition arcs obtained algebraically

for small increments of _ are presented in table II for convex surfaces

and in table llI for concave surfaces. Each of the arcs originates on

the y* axis for which _' = 0 and its length is dependent upon the

inlet value of ve. The range of values of Ve_ Vl, and vu presented

is thought to cover foreseeable applications for turbine- or compressor-

blade section.

_ _NF_DENTI_
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Blade-section layout.- The shape of any particular section is a
function of inlet and exit Mach numbers as well as total turning angle

and Mach number on the circular-arc surfaces. For a symmetrical profile_

the turning angle e is equal to twice the air inlet angle 6e. The

concave and convex circular arcs subtend central angles of e - 2(v e - v Z)

and e - 2(v u - re) J respectively.

Once the design parameters have been selectedj the flow channel

can be constructed quite simply. The circular-arc radius for the

selected values of vI and vu are obtained from table I and the
coordinates of the transition arcs are computed from values given in

tables II and III transformed by standard trigonometric means through

an axis rotation of @/2 + (Vl - ve) and e/2 + (ve - vu) degrees for

the concave and convex surfaces 3 respectively. The convex transition

arc is extended by means of a straight line parallel to the inlet or

exit flow direction to the rotor leading- or trailing-edge line. To

obtain the blade form 3 the convex surface is displaced a distance G* 3

as shown in figure 5_ so that the two surfaces are tangent at the leading

and trailing edges. Examples of several symmetrical blade sections

obtained in this manner are presented in figure 6.

Asymmetric sections may be designed similarly by treating the inlet

and exit sections as separate layout problems. To obtain a sharp

trailing edge_ the exit area normal to the flow can be obtained from

the familiar cascade relation

A 2 cos _e

cos( e - e)

To satisfy the equation of continuityj the design exit value of v must

correspond to that of an isentropic area change A2/Ae.

Although a flow passage can be constructed for any selection of

flow parametersj provided that the sum of transition turning on either

surface does not exceed the total turning angle desired_ there are

solutions for which a compressor- or turbine-blade section does not

exist because the surfaces are interchanged resulting in negative thick-

ness. For most practical selections of v13 Vu_ and 8_ however_ no

difficulty is encountered.

Not only the blade shape but the solidity _ as well is predeter-

mined by the selection of the surface Mach numbers for a given rotor

design. The solidity of a symmetrical blade can be determined analyti-

cally without the necessity of graphical construction. The necessary

equations to find the solidity of a blade are given in appendix A.

Since the mechanical design of a rotor due to blade-hub attachment
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difficulties as well as the aerodynamic performance dependupon solidity 3
figures 7 and 8 have been prepared for illustrative purposes. The
variation of solidity with turning angles for the case where

1
Ve = _(Vu + vl) and each property angle is constant in turn is presented
in figure 7- Figure 8 presents results for the case where the inter-
dependenceof the property angles is removed. The lowest solidlties
are achieved whenthe divergence of surface Math numbersor loading is
greatest. For preset surface Math numbersthe solidity is affected
slightly by a variation of inlet Machnumber.

From the aerodynamic standpoint, low solidity is desirable because
of lower total frictional losses_ however, separation losses and out-
let flow-divergence angles will undoubtedly be greater as the pressure
rise on the convex surface at the exit transition section becomesgreater
at low soliditles. The designer's selection of a reasonable solidity to
yield the highest efficiency is facilitated by the use of vortex sections
since the profiles are related to one another and therefore performance
estimates maybe madeby interpolationof the results of cascade tests
of representative sections.

Method of Creating Finite Leading-Edge Angle

For use in a practical compressor or turbine the supersonic vortex
sections have a serious disadvantage because of the extremely thin
leading edges which are subject to rapid wear due to high-velocity solid
particles in the stream and to deflection due to the pressure differential
existing on the two surfaces. This difficulty maybe circumvented by

the means outlined subsequently to create a finite wedge angle at the
leading and trailing edges.

Subsonic axial velocity component.- Kantrowitz (reference 2) has

shown that for subsonic axial velocities when expansion waves are

generated along the entrance region (in this case the forepart of the

convex surface) an oblique compression shock of strength equal to the

total expansion strength will be created to obtain a steady-state condi-

tion. A small angle wedge therefore can be placed on the convex surface

followed by either an expansion corner as shown in figure 9(a) or a

convex arc so placed that all the expansion waves are upstream of the

following blade. The expansion waves originating at B and the compres-

sion shock from A being of the same family will effectively cancel each

other a short distance upstream of the cascade for axial velocities near

sonic. The wave pattern in figure 9(a) composed of finite-strength

expansion waves is seen to be completely cancelled within the confines

of the figure for a group of blades. As in the case of an isolated

airfoil in supersonic flow 3 the waves cancel completely only at an

infinite distance from the source of disturbance so that in reality it



is only at a great distance from the cascade that the undisturbed Math
number is Mi. As the fluid approaches the cascade it oscillates with
increasing amplitude about Mi as a mean. At the entrance the flow is
turned and expandedto the inlet value Me different than Mi to
satisfy the equation of continuity.

The graphical procedure used to determine Mi is outlined in
reference 29 however_ the accuracy of the method is limited and it fails
in solving the inverse problem of interest to the compressor designers,
namely, that of determining Me and _e when Mi and _i are given.

A simpler method capable of analytic solution is presented. When
the oblique shocks are assumedto be relatively weak, the flow process
maybe regarded as isentropic. The last infinitesimal strength wave in
the expansion fan about B to be cancelled (see fig. 9(b)) will be the
Machwave associated with the undisturbed upstream Machnumber Mi. If
that Machwave is BD, then a line FD which is tangent at D to the
limiting streamline AC entering the passage must be parallel to the
direction Mi, and the area normal to the flow across BD is equal to
to Ai. The extension of line FD will pass through point E, since a
line Joining the points E and B is parallel and equal to G*.

Because AC is a streamline and the flow in the expansion fan is
isentropic, the change in flow direction _i - _e must equal ve - vi
to satisfy the equation of continuity.

To solve the problem analytically, _ can be shown to be a func-

tion of Mach number since

Ae (G* - t)cos Pe

A i G* cos _i t Icos 6e: - _-_/F$6_i

and

1

Ae Ae A* Mi*i---_ "'2 Mi* _

A-7: xA-7: Me* + 1 17%7/-2

A

Use may be made of the values of v and A--g as a function of Mach

number tabulated, for example, in reference 6 to determine the desired

unknown through a trlal-and-error selection of Mach numbers. Since the



solution is a function of t/G* 3 the wedgeangle is not uniquely deter-
mined. Care should be exercised in selecting a suitable angle such
that the shock is attached and the position of the expansion corner
permits the last wave of the fan to precede the following blade.

Another method utilizes a shock wave originating at the leading
edge of the concave surface which will fall inside the passage and
therefore will not affect the flow upstream of the leading edge. The
value ve (see fig. 9(c)) can be obtained from the oblique-shock equa-
tions (reference 6) when vi and wedgeangle 8 are known. The points
A and B are the start of the transition arcs of a passage designed
for an inlet Machnumberequivalent to Ve and for a turning angle
0 = 2(_ i - 8) for a symmetrical section. From the point A 3 a straight

line tangent to the transition arc is projected far enough forward so

that the shock wave caused by deflecting the flow at point C intersects

the point B on the opposite surface. The line BD is parallel to M i

creating an exterior corner of 6° at B. The basic leading-edge shape

for ve is indicated by EAF.

From practical considerations 3 the wedge angle 8 should be fairly

small to yield a range of rotational speeds for which the shock will be

attached as well as alleviating the possible flow separation at B due

to shock - boundary-layer interaction.

Supersonic axial-velocity component.- When the axial component of

the relative velocity is supersonic 3 another method of creating a

leading-edge wedge is to have the shock originate on the leading edge

of the convex surface by taking care to select a wedge angle sufficiently

small to insure the shock location within the passage (see fig. 9(d)).

The passage in this case is designed for an inlet Mach number equivalent

to v e and a turning angle 0 = 2(_ i + 8) for a symmetrical section.

The surface AC is parallel to the undisturbed inlet velocity M i and

at A the surface is turned sharply to cancel the leading-edge shock.

The thinner boundary layer at Aj as compared to that at point B

(fig. 9(c)) and the centrifugal force will materially aid in preventing

flow separation on the concave surface at A. For this reason the

performance would be expected to be superior to the second subsonic

axial-velocity-component case.

For the symmetrical section_ the sharp corners at the trailing

edge will give rise to trailing expansion waves and oblique shocks. To

a first-order approximation the exit Mach number will equal the entering

M i and the turning angle 8 = 2B i for a true impulse condition.

UL _ %_DEI_F_ L
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Consideration of Starting Contraction Ratio

In the design of a passage for supersonic flow_ it is important to

examine any converging portion to insure that supersonic flow can be

started (see reference 7). Most practical vortex sections contract the

flow. In this discussion_ consideration is given only to those cases
when the minimum area occurs between the concentric circular arcs. For

given values of vI and vu it is possible to determine analytically

the greatest design value of ve for which supersonic flow starts in

the passage. The flow can not be assumed one dimensional as in refer-

ence 8 because of the large velocity gradient between the channel walls.

Since the starting Mach number depends both upon the stagnation-pressure

loss through the normal shock and the maximum mass flow through the

minimum sectionj the reduction of mass flow due to curvilinear flow

must be obtained. The maximum inlet-design Mach number will therefore

be that design value of Mach number for which the maximum rate of flow

can be accommodated when the normal-shock loss and the large velocity

gradient in the concentric-arc passage are taken into consideration.

When a normal shock is assumed to be spanning the entrance at the

instant of starting as shown in figure i0_ the gain in entropy through

the shock will be constant so that the flow downstream of the shock will

still be irrotational. If the circular portion of the passage is suf-

ficiently longj a vortex type of flow will be generated. The vortex

equation expressed nondimensionally (developed in appendix B) is

s = K = Constant

The immediate problem is to determine the constant K = Kma x for

which the rate of flow is a maximum for a given radius ratio and stagna-

tion conditions. The derivation of the necessary equation is presented

in appendix A and the resulting values of Kma x as a function of the

ratio of the concave to convex radius is given in figure ii. The reduc-

tion in maximum mass flow C compared to that in a one-dimensional

passage of width equal to the distance between the two radii is pre-

sented in figure 12.

The mass flow in the passage at the instant of starting when the

normal shock spans the inlet is equal to the flow rate when started.

The physical area contraction as a function of inlet Mach number and

vu and vI may readily be determined for the started condition. If

equated to the maximum contraction ratio for starting_ when the flow

reduction factor C is taken into consideration the maxi_im selected

value of Ve_ for which the passage can be designed to start 3 can be
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found. The derivation of the equations and method of attack are outlined

in appendix C. The limiting values of inlet ve as a function of v 1

and Vu calculated as indicated in appendix C are presented in figure 13.

The limiting inlet Math number_ however 3 is not valid for the thick-

ened leading-edge sections which need to be investigated individually.

Experimental Apparatus and Procedure

The blade models are mounted between glass side w_lls in the test

section of the 2¼-by 2-inch supersonic cascade tunnel (fig. 14). This

tunnel is a closed-return type in which the flow is produced by a

compressor previously used as a supercharger on a V-1650-7 Packard air-

craft engine. The power to operate the compressor is furnished by a

300-horsepower direct-current motor. Upstream of the test section is a

24- by 24-inch settling chamber containing three sets of fine screens.

Downstream of the test section is a two-dlmensional diffuser of approxi-

mately 6° divergence angle followed by return ducting incorporating two

aircraft type of water-cooled radiators to control the air temperature.

An air bleed-off valve in the settling chamber is used to control the

settling-chamber pressure at from 1 to approximately 2 atmospheres. All

tests herein reported, howeverj were made with atmospheric stagnation

pressure. Schlieren photographs of the flow were made with the use of

the usual two parabolic mirror systems.

Two blades forming one passage were used per set. The passage

contours are accurately machined to a tolerance of 0.O02-inch. In

order to gain structural rigidity near the leading and trailing edges,

the outer surfaces were arbitrarily designed to have finite edge angles

and therefore the blade profiles are not similar nor do they represent

any vortex section.

A view of the test section with one sidewall removed is presented

in figure 15. The asymmetric supersonic nozzle was designed for an

exit Math number of 1.57 equivalent to a v of 14°. A solid wood

fairing on the convex side and a flexible_ adjustable extension on the

concave side were used to guide the flow outside of the test passage.

The blade models_ of 2_ - inch span, were mounted on dowel pins press-

fitted into bushed holes in one of the glass windows. The angle of

attack of the blades could be varied with respect to the nozzle by

rotating the glass. In this way the Mach number entering the passage

could be varied within limits imposed by the appearance of detached bow

waves on the leading edges.

_'____



Four sets of blades of different solidities were chosen for testing.
Figure 16 is a photograph of one of these blades showing the static-

pressure orifices and scratch marks used to create Mach wave disturbances

in the flow. All of the blades had a turning angle of 120 °. Solidities

and the theoretical v values for the concentric axis and entrance
conditions are as follows:

Blade

I

II

III

IV

v1

(deg)

V u

(deg)

2O
24

28
24

V e

(deg)

14

14

14

13

Solidity

_. 69
3.64
2._9
2.70

Figure

6(b)
6(c)
6(a)
6(e)

In order to prevent the familiar condensation shock phenomenon

caused by expanding moist air 3 the settling-chamber temperature was

maintained at a high temperature by manual regulation of the cooling

water flow. The operating compressor-pressure ratio for any configura-

tion was obtained by increasing the motor speed until all test section

pressures remained unchanged with a further increase in speed. Total

and static pressures were measured inside the passage Just before the

end of the concave blade either by single- or multiple-tube probes.

Flow surveys were made at several spanwise stations for several inlet

Math numbers. Chordwise static-pressure orifices were located at the

midspan of both passage surfaces. In addltion 3 three spanwlse static-

pressure orifices on both surfaces were located at the chordwise posi-

tion where the survey measurements were made. The inlet total pressure

and temperature were measured in the settling chamber. All pressure

measurements were recorded by photographing a multlple-tube mercury
manometer.



RESULTSANDDISCUSSION

The figures and tables presenting the test results for the four
passages are tabulated below:

Type of data

Static-pressure
distribution

Schlieren photographs

Total-pressure
recoveries

Weighted average total-
pressure recoveries

Blade

I II III I IV
L

Figure

17(a)

19

18(a)

Iv(a)

17(b) lT(c)

20 21

18(b) 18(c)

Tab le

IV(c)

17(d)

22

18(d)

IV(d)

An examination of the stagnation pressure recoveries at the exit

of the blade passages (fig. 18) makes it obvious that the flow is not

two dimensional. The boundary layer has "piled up" in toward the center

of the convex surface. As in refeTence 4_ there is evidence of circula-

tory boundary-layer flow down the side wall to the convex surface and

inward toward the center of the convex blade. An explanation of this

phenomenon can be deduced by a consideration of the centrifugal forces

and boundary-layer effects along the side wall. Out in the free stream_

the centrifugal force caused by curved streamlines is just balanced by

a positive pressure gradient (toward the concave surface). In the wall

boundary layer_ howeverj this pressure gradient is greater than the

centrifugal force} thus the flow moves down the side walls and inward

on the convex surface. For low-aspect-ratio blades such as for these

tests_ the side-wall boundary-layer inflow effects are felt completely

across the span at the exit of the blades. Two-dimensional flow at

the spanwise center of the blades could be more closely approached by

using large-aspect-ratio blades to minimize the extent of this boundary-

layer inflow. The size of the existing equipment; however; prevented

the use of large-aspect-ratio blades. In an actual rotor; centrifugal

forces also exist in the spanwise direction and therefore the results

of these tests should be considered only as conservative indications
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of the performance of blades in an actual rotor. The fact that the flow

is three dimensional in character in these tests should be kept in mind

when inspection is made of the schlieren photographs.

An interesting experiment which shows the effect of this boundary-

layer inflow was conducted by placing two boundary-layer fences on the

convex surface of blade II_ placed 1/4 inch from the glass wall. Each

fence consisted of a thin plate 1/4 inch high and extending from i0 to

i00 percent of the chord. Comparing the pressure recoveries near the

convex surface of this modified blade (fig. 18(e)) with the same blade

(fig. 18(b)) shows that the fences have reduced boundary-layer accumula-

tion and separation. These particular data should be considered prelim-

inary in nature as static-pressure measurements necessary to correct

for shock losses were taken only at the blade surfaces.

Blade I was tested at a slightly higher than design inlet Mach

number. This higher inlet Mach number was necessary to prevent shocks

in the outer channels_ caused by the configuration of the tunnel_ from

extending ahead of the blades. The static pressures on the surfaces of

the blades were higher than design. This effect may be due to the

thickening of tD_e boundary layer in this narrow channel. The pressure

rise at the rear part of the passage is explained by the slight flow

separation on the convex surface as seen from the schlieren photographs

(fig. 19(a)), and the consequent diffuser effect due to reduced flow

areas.

3

Static-pressure distributions on passage II are in good agreement

with the predicted values except at the rear part of the blade where

separation had its usual effect. A study of midspan pressure recoveries

indicated a decrease in pressure recovery at the convex wall for an

increase of inlet Mach number corresponding to a change of ve of i°_

(fig. 18(b)).

Supersonic flow in the passage formed by blade III could not be

started at the design inlet Mach number of v equal to 14 °. The inlet

Mach number had to be increased to v value of approximately 18 ° .

Figure 21(a) shows a schlieren photograph of the passage in an unstarted

condition. All data presented for this blade were taken at an off-design

inlet N_ch number. As seen from the schlierenphotograph in figure 21(b)_

the boundary layer separated from the convex blade surface at approxi-

mately the 30-percent-chord station_ but was apparently reattached a

short distance downstream in a manner typical of laminar boundary layer.

The usual three-dimensional-flow effects are noted from the schlieren

photographs and pressure recoveries.

In figure 13, it can be seen that 3 for a Vu of 28 ° and a vI of

O_ the maximum design entering Mach number is 14.4 °. Blade III_ there-

fore_ should start at its design inlet Mach number of v equal to 14 ° •
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In the derivations of the equations used to plot figure 13, however, the

effects of the boundary layer have been neglected. The presence of

boundary layer or flow separation would decrease the maximum mass flow,

and thus decrease the maximum design entering Mach number. Since

blade III was designed with an entering Mach number very close to the

limit, it is not surprising that viscosity effects prevented it from
starting at a v of 14 ° .

The inlet Mach number for blade IV is greater than design by the

equivalent of a change in v of 2° . Nosing down the blades, however,

caused the strong shock in the outer bypass channel to extend ahead of

the convex-surface blade. Whether this result was caused solely by the

tunnel configuration or by the fact that the passage would not start at

a lower Mach number was not determined. It should be noted that this

blade is designed close to the limiting design maximum inlet Maeh number.

The static-pressure distribution is in reasonable agreement with pre-

dicted values except for the effects of boundary-layer accumulation

and separation at the rear of the passage.

The variation of the mass-weighted stagnation-pressure recovery for

all blades was small. (See table IV.) An approximate average recovery
of 87.5 percent was obtained for all sections tested. Examination of

an individual passage shows a large variation of pressure recovery at

the various span positions which is caused by three-dimensional flows.

A comparison of the blade loading cCL for the four blades given

indicates that the experimental loading is approximately 90 percent of

the theoretical value except for blade number I in which the excellent

agreement should be disregarded in view of the marked divergence between

predicted and measured pressures.

Blade

I

II

III

IV

oCL

The oret ical

i.77
1.68

I.71
I. 76

Measured

i.77
1.50

i._4
1.62

Schlieren photographs shown in figures 19 to 22 give an indication

of the flow condition in the blade passages. It is interesting to note
in figure 19(c) and figure 22 the close correlation of the theoretical

vortex-wave pattern_ shown by the dotted line, and the actual resulting

waves. The shock waves at the leading edge and in the passage are known
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to be weak. This weakness is apparent by the rapid dissipation of the
downstreamreflections and the "roof top" behavior of the boundary layer
upon meeting the shock wave on the convex blade surface. This phenomenon
is typical of a laminar boundary layer 3 that isj rapid thickening and
separation of the boundary layer upstream of the shock and creation of
expansion waves as the boundary layer is rapidly thinned behind the
shock. The magnitude of the increased boundary-layer thicknessj for
such flows 3 is a function of shock strength (reference 8).

The existence of compression or expansion waves at the exit of the
passage can change the boundary layer upstream in the passage, and thus
to someextent affect the separated region in the passage. This phenom-
enon acts muchthe sameas the shock before the head of the total-
pressure probe in figure 19(a) which causes the boundary layer to thicken
upstream. Although it was impossible with the existing equipment to
change the downstreampressure appreciably 3 the downstreampressure could
be varied somewhatby moving the flexible wall. An example of this
result is shownin the schlleren photograph in figure 19(c) where the
angle of the trailing-edge shock has been changed approximately lO° and
the flow leaving the blade is closer to the required exit direction. No
appreciable changeswere noted in the pressure recovery due to changing
the downstreampressure by this method.

The results of the four-blade passages followed similar trends with
small variations in over-all results. In general 3 the discrepancies
between theoretical and experimental pressure distributions maybe
explained by the boundary-layer inflow and flow separation. These two
effects acting together caused the pressure to rise in the region of the
trailing edge. The data indicate that these discrepancies could be
reduced by using suitable devices to minimize the boundary-layer inflow
from the side walls. Very little data are available to comparewith
the present results in order to determine whether the vortex-blade
sections are as efficient as any other type. Somedata are contained
in reference 43 in which a pressure recovery of 95 percent was experi-
enced for a 90° turning passage of solidity 3.123 an inlet Machnumber
of 1.73 and designed for a static-pressure drop across the blade row.
The data are not exactly comparable because of the difference in turning
angle, Reynolds number3 and aspect ratio. Stodola (reference l) presents
steam-bucket performance in terms of the velocity ratio _, which is
equal to the ratio of the average outlet velocity to the inlet velocity.
The value of _ from the present tests is approximately 92 percent_
whereas the upper limit for the data in reference 1 is about 80 percent
when the inlet and outlet static pressure are assumedto be equal.

Moving the concave blade of set I away from the convex blade along
the chord bisector llne in order to determine what effect misalinement
would have on the performance reduced the midspan pressure recovery from
95 to 84 percent for the condition shownin figure 23. The reason for

|_ 0



this result is obviously due to the large separation and standing shocks
in the passage. The results of this part of the investigation point out
the desirability of aerodynamically designing the passage even though
the behavior of the boundary layer modified the predicted results.

C0NCLUSIONS

A method for designing shock-free supersonic impulse compressor
and turbine blades in which the blade passage is essentially the space
between two concentric circles is presented. Since the shock-free
supersonic flow between two concentric circles is a vortex flow_ the
problem is one of designing an entrance to the circular-arc passage
which will convert the uniform entering flow to the required vortex
distribution and vice versa at the exit. The coordinates of manytransi-
tion arcs have been computedand are included in tabular form. The
resulting sections are related to one another so that changes in the
design variables can be investigated independently in cascade and the
performance of a section for particular rotor conditions maybe deduced
from tests of representative sections.

Three methods of increasing the thickness particularly near the
leading and trailing edges are presented although not experimentally
investigated. The ability of the passage to start supersonically was
investigated and the limiting design inlet Machnumberfor starting
was determined for given surface Machnumbers.

Four different blade passages designed to turn the flow 120° were
investigated in cascade at a Machnumberof approximately 1.57. The
specific conclusions resulting from such tests are as follows:

i. The chordwise static-pressure distribution agrees reasonably
well with design values. The discrepancies are explained by side-wall
boundary-layer accumulation and flow separation.

2. The cascade flow was not two dimensional because of the circula-
tory boundary-layer flow.

3. The weighted stagnation pressure recovery for the entire span
is approximately 87.5 percent for all sections.

4. There is little data to indicate whether these pressure
recoveries are better or worse than sections differently designed
although the recoveries are superior to any of the steam turbine bucket
results reported by Stodola.

5. The desirability of aerodynamically designing the passage is
borne out by the results obtained whenthe blades are incorrectly spaced.

NFIDENTIAL_



Future research on the vortex impulse sections to determine the
performance for a range of design variables and effects of leading-edge

thickness should be undertaken because of the promising results obtained.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field_ Va.

\



APPENDIX A

CALCUIATION OF THE SOLIDITY OF A SYMMETRICAL BLADE

The solidity of a symmetrical blade can be determined analytically

by using the equations developed in appendix C. Equation (CTo) in
appendix C can be rewritten

Ae A e= (AI)

From figure 5, it can be seen that

=

G* = 41r*

sln(2-6e) (A2)

or for a symmetrical blade since e = 28 e

G*=
cos e/2

Combining equations (A2a) and (AI)

(A2a)

A e Q(RI* - Ru* )
G* = --

A*
cos 0/2

(A3)

For a symmetrical blade_ the equation of the symmetrical axis (see fig. 5)
is

X ctn_/2- (re- Vl)_ + Y* = 0 (A4)

where the X* and Y* axes are as defined for tables II and III.

The perpendicular distance from this axis to the end point XI* ,
Yl* of the concave surface can be shown by analytic geometry to be
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-_-= XI* cos - (Ve - v + YI* sin e (ve - v (AS)

When equations (A3) and (A5) are used, the solidity for a symmetrical

blade is thus given by

z

2 1" cos - (Ve - V + YI* sin O (v e - v cos

=
A

e

A-_Q(RI*- Ru*)

which can be easily solved by using values from table III, (fig. 24)

and the values from the following equation which have been published

in many texts (for example, reference 6).

ll2_'+l

7 7-1)Ae 1 _____1%2+

A-_:_( Y+2 1

(A6)
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APPENDIX B

CAICULATION OF THE REDUCTION OF THE MAXIMUM RATE OF

MASS FLOW DUE TO CHANNEL-WALL CURVATURE

For most practical cases# the minimum passage width which pre-

determines the maximum rate of mass flow for given stagnation conditions

of pressure and temperature occurs between the concentric circular-arc

portions of the throat. When only this curved region of flow is con-

sidered# the boundary layer being neglected# an expression may be derived

by expressing the reduction in the maximum rate of mass flow due to

channel-wall curvature as a function of radius ratio.

When the normal shock spanning the entrance to the blade passage

is assumed to be of constant strength (fig. i0) the flow within the

passage can be considered irrotational_ with a greater entropy than

that upstream of the normal shock. For the flow to be irrotational

and in radial equilibrium downstream of the shock if bounded by suf-

ficiently long concentric-circular walls_ it must satisfy the vortex

equat ion

VR* = C onstant (BI)

Since the flow is adiabatic and isentropic

V2 7 Po '7 P+ _
7 - 1 p 2 7 - 1 Po'

(B2)

and

p Po'= (B3)
p7 po,7

combining equations (BI), (B2), and (B3) and solving for p gives

P = PO'

¢_ - IV R* andwhere k = 2 ao

normal shock.

j 2172ao2-i V 7-1 = Po' R.2/
(B$)

Po' equals the stagnation density behind the



The mass flow parameter m* is therefore

i

m* = m__= DV dR* = i k2 2 k dR*

_. J_* j_. _o' _v/ ___o_
(BS)

for 7 = 1.4_ equation (B5) is reduced to an analytically integrable

equation such that

R* (R*2 - k2)i/2

5k2
+ log_* + (R* 2 - k2)i/_IRl*

JRu*

4 (R.2 - k2) I/2

5 R*

(B6)

For all real flow% k is less than R*. In order to determine kmax3

that is_ that value of k which will yield the maximum rate of flow

between RI* and Ru* _ equation (B5) is differentiated under the

integral sign and equated to zero_ thus_

If7 [RI*
dm* = Po' 2_ ao _2 k2 _ k 2 7-1

dk I _Ru. 7 I R.3

4 R.2/ |dR* = 0

J
for 7 = 1.4

dm* m*

dk k

+

(BT)_



In order to reduce the labor involved in determining the value of k

for all possible values of Rl* and Ru* _ equation (B1) may be made
nondimensional.

where

-i V
2 ao

s =K (BS)

R* Ru* k
s = _ sI 1.0 su = _ K =

R1. = R1. Rl*

Equation (B7) is now

.I(s 2 _SKmaxs5Kmax2) 7/2_ (s 2 - Kmax2)5/2s5

(o_-<m:_)_/_
17 s3 -

_4(s__<m:x_)_l_-s(o_-_ax_)_/_+
5 s 5Kmax2

_l. 0

+(°2__m,x2)i/:o
B u

The resulting values of Kma x for all possible radius ratios are
presented in figure ll.

Equation (B6) may be rewritten

_--_ _°'a°_x s5 JSu
(Bg)

The maximum one-dimensional mass flow through a passage of width equal

to distance between the radii is



p*a*(Z - Su) =
Po'ao

1

7 - i_7-I-

/

g

_VT--- _ (i - Su) = 0.5786Po'ao(l - Su)

(BlO)

Combining equations (B9) and (BIO) to determine the reduction in maximum

mass flow Cj due to flow curvature

-
c-___-B.864B]__"uL s5 _]°u (_]-])

The value of C is presented in figure 12 as function of su.

The position of the sonic radius ss for any given radius ratio

may be found upon substitution of a* for V in equation (B8). Thus

+1Ss = Kmax - i

The sonic radius is very close to the geometric mean radius such

that Ss _ _u and may be used to determine Kma x to a good approxima-

tion for gases whose ratios of specific heats are other than 1.4. Kmax

determined by this method is shown dashed in figure ll, and its effect

upon mass flow reduction is plotted in figure 12. The maximum error

in Kma x which occurs at the minimum radius ratio for gases of 7 = 1.3,

1.4, 1.5 is i_, 2, and _ percent, respectively.and

_ ONFIDENTI_L



APPENDIX C

CALCULATION OF THE MAXIMUM DESIGN ENTERING MACH

NUMBER FROM STARTING CONSIDERATIONS

Immediately preceding the starting of a particular passage_ a

shock will span the inlet. After the shock has passed downstream through

the minimum section the rate of mass flow is unaltered. The inlet

opening for any Mach number can be obtained when the mass flow through

the circular passage is known. The maximum inlet design Mach number

for any particular circular passage will therefore be that maximum Mach

number for which the maximum rate of flow can be accommodated when the

normal-shock loss is taken into consideration.

The rate of mass flow for a developed vortex can be written as

RI*m _ pV dR*

F* jRu.
(C1)

or

I*

m pV

p*a*r* = . p'a*
*dR* = A dR* (C2)

jRu.

and

and

A

Rewriting equation (C2) gives

_MI** 7 + i 7 -

m _ ( 2

p*a*r* M*

IM.
dM* (c3)

":,U-O IDENT L



When inlet and vortex flow parameters are equated

m PeVeAe

p*a*r* p*a*r* MU . y + 1
1"

1
- 1 }-1

7 [ N.2

M*
dM* (c4)

or

r* PeVe

The area contraction is

M*
dM*

M*
(c5)

A e

r*

RI* - Ru*

) 1

_Mu* (7+_I 7 - I M. 7---_
=__t_ 2 2 aM*

PeVe M*
I* MU* - MI*

(c6)

Let

M1.Mu. F_u. 7 + 1

1" M*

7 - 1

which is a function of the vortex surface Mach numbers only.

7 =1.4

Q = Mu* - Ml* + 28

1.571 log

M* /_M1.

C ONFIDENTIAL

For

(C7)

(CTa)
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thus the area contraction is

Lo-N-a_

PeVe Q (CTb)

The value of Q is given in figure 24 as a function of vI and vu.

The starting maximum contraction ratio (from reference 8) is

modified by the flow reduction factor C so that starting contraction
rat io

P3 Ae

= Po A - c) (c8)

P3
where p-_ is the total-pressure recovery through a normal shock and

Ae p'a*

-- is equal to PeVe and both are a function of inlet Mach number Me .A*

Equating (C7b) and (C8) to determine the maximum design value of Me

such that the contraction is equal to the starting contraction ratio gives

Q _ P3

Po

Since

P3

has been tabulated as a function of M in reference 6 the maximum

design Math number for which the section will start can readily be
obtained.

_0 = _ L
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z

MACH NUMBER#

v _ M

o.o 9o.oo 1.ooo

.i 79.46 1.o17

.2 76.75 1.o27

•5 72.1o 1.o51

I.O 67.57 1.o82

1.5 64.45 I.iO8

2.0 62.00 1.133

2.5 59.95 1.155

3.0 58.18 1.177

3.5 56.61 1.198
4.o 55.2o 1.218

4.5 53.92 1.237

5.0 52.74 1.257
6.0 50.62 1.294

7.0 48.75 1.33o

8.0 47.08 1.366

9.0 45.57 1.4o0

!o.0 44.18 1.435

ii.o 42.89 1.469

12.o 41.7o 1.5o3
13.o 40.58 1.537

14.o 39.54 1.571

TABLE I

MACH ANGLE AND RADIUS RATIO

OF v FOR 7 = 1.40

M* R*

1.000 1.000

1.014 .9862

i.023 •9775

1.042 -9597

I.067 •9372

i.088 •9191

i.107 •9033
i. 124 •8897

i.141 •8764

i.157 .8643

i.172 •8532

i.186 .8432

1.200 .8333

i.227 •8i50

I.252 •7987

i.277 •7831

i.300 •7692

i.323 •7559

i.345 •7435

I.367 •7315

i.388 •7205
i.408 •7102

v

15.0
16.o

17.o
i8.0

i9.0
20.0

22.0
24.0

25.o
26.0
28. o

3o.o
32.0
34.0

35.o

36.0

38.o
40.0

45.0

5o.o

55.O
6o.o

38.55

37.61

36.72

35.87

35.O6

34.29

32.83

31.49

30.85

30.23

29.05
27.96

26.90

25.91

25.43

24.96

24.07

23.2i

21.21

i9.39

17.7i
i6.i6

AS FUNCTION

M M* R*

i.605

i.639

i.673

i.707
i.74i

i.775
1.844

1.919

i.950

i.986

2.059
2.134

2.210

2.289
2.329
2.369

2.452
2.538

2.764

3.013
3.287
3.594

i.428

i.448

i.467
i.486

1.505

i.523

i.559
i.593
i.6iO

1.627

1.659

1.691

i.722

i.752

1.767

i.781
i.810

1.838

1.905

1.967

2.025
2.080

0.7003

.6906

.68i7

.6729

.6645

.6566

.6414

.6277

.6211

.6146

.6028

.59i4

.58o7

.57o8

.5659

.9619

.5525

.5441

.5249

.5O84

.4938

.4808
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TABLE III

COORDINATES OF TRANSITION SECTIONS FOR CONCAVE BLADE PASSAGE 7 = 1.40 - Concluded

v I = 12 ° vI = 16 ° VI = 22 °

0 12 0 0.7317 6 22 0.1549 0.6824 0 22 0 0.6416

i 13 .0259 -7315 7 23 .1829 .6792 i 23 .0228 .6414

2 14 .0523 .7308 8 24 ,2116 .6754 2 24 .0459 ,6408

3 15 -0793 .7296 9 25 .2411 .6710 3 25 .0697 .6398

4 16 .i069 .7279 i0 26 .2714 .6659 4 26 .0939 .6383

9 17 .1351 .7257 ii 27 .3027 .6601 5 27 .1188 .6363

6 18 .1640 .7229 12 28 .3349 .6536 6 28 .1444 .6339

7 19 .1936 .7195 13 29 .3681 .6462 7 29 .1706 .6309

8 20 .2238 .7156 14 30 .4023 .6380 8 30 .1976 .6273

9 21 .2549 .7109 15 31 .4378 .6288 9 31 .2254 .6232

10 22 .2868 .7056 16 32 .4746 .6186 I0 32 .2541 .6183

Ii 23 .3195 .6995 17 33 .5127 .6073 ii 33 .2838 .6128

12 24 .3532 .6926 18 34 .5522 .5948 12 34 .3144 .6066

13 25 .3879 .6849 19 35 .5933 .5811 13 35 .3460 .5996

14 26 .4237 .6763 20 36 .6361 ,5659 14 36 .3789 .5917

15 27 .4606 .6668 21 37 .6809 .5492 15 37 .4132 ,5)828

16 28 .4987 .6562 22 38 .7275 .5308 16 38 .4488 .5729

17 29 .5381 ,6445

18 30 .5789 .6317 v1 = 18 ° v I = 26 °
19 31 .6212 ,6175

20 32 ,6651 .6020 0 18 0 0.6729 0 26 0 0,6147

21 33 .7108 .5849 i 19 .0239 .6727 i 27 .0218 .6145

22 34 .7583 ,5661 2 20 ,0481 .6721 2 28 .0441 ,6139

23 35 .8077 .5457 3 21 .0729 .6710 3 29 ,0668 .6130

24 36 .8592 .5232 4 22 .0984 .6694 4 30 .0901 .6115

25 37 .9132 ,4986 5 23 .1243 .6674 5 31 .I141 .6096

26 38 .9697 .4717 6 24 .1509 ,6648 6 32 .1388 .6073

" 7 25 .1783 .6617 7 33 .1642 .6044

v I = 14 ° 8 26 .2064 .6580 8 34 .1903 .6009

9 27 .2352 .6537 9 35 .2172 .5969

o 14 o o.71o2 io 28 .2649 .6487 i0 36 .2451 .5922

i 15 .0252 .7100 Ii 29 .2955 .6430 Ii 37 .2741 .5868

2 16 .0509 .7093 12 30 .3271 .6366 12 38 .3041 .5807

3 17 .0771 .7082 13 31 .3597 .6294

4 18 ,i038 .7065 14 32 .3934 .6213 v I = 30 °

5 19 .1312 .7044 15 33 .4284 .6122

6 20 .1592 - .7017 16 34 .4647 .6021 0 30 0 0.5913

7 21 .1879 .6984 17 35 .5022 .5910 I 31 .0210 .5911

8 22 .2174 .6945 18 36 .5414 .5786 2 32 .0423 .5905

9 23 .2476 .6900 19 37 .5822 .5650 3 33 .0642 .5895

I0 24 .2787 .6848 20 38 .6247 .5499 4 34 .0868 .5881

ii 25 .3106 .6789 21 39 .6682 .5337 5 35 .i098 .5863

12 26 .3435 .6722 6 36 .1337 .5840

13 27 .3774 .6647 Vl = 20° 7 37 .1584 .9812

14 28 .4124 .6563 8 38 .1839 .5778

15 29 ,4485 .6469 o 20 0 0.6566 9 39 ,2094 .5740

16, 30 .4858 ,6365 i 21 .0233 .6564

17 31 .5245 .6251 2 22 .0470 .6558 v I = 34 °
18 32 .5648 ,6124 3 23 .0712 .6547

19 33 .6065 .5984 4 24 .0960 .6532 0 34 0 0.5707

20 34 .6496 ,5831 5 25 .1214 .6532 i 35 .0202 .5705

21 35 .6946 .5663 6 26 .1475 .6487 2 36 ,0409 .5700

22 36 .7415 .5478 7 27 .1743 .6456 3 37 .C622 .5691

23 37 .7906 .5275 8 28 .2017 .6420 4 38 .0842 .5677

24 38 .8419 .5051 9 29 .2300 .6378 5 39 ,1058 .5660

I0 30 .2591 .6329

V I = 16 ° II 31 .2892 .6273 V I = 360

12 32 .3203 .6210

0 16 0 0.6907 13 33 .3525 .6139 0 36 0 0.5614

I 17 .0246 ,6905 14 34 .3858 .6059 i 37 .0212 .5612

2 18 .0495 .6898 15 35 .4202 .5970 2 38 .o418 ._6o7

3 19 .0749 .6887 16 36 .4560 .5870

4 20 .i009 .6871 17 37 .4933 .5760

5 21 .1276 .685o 18 38 .5322 .5637
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TABLE IV

WEIGHTED AVERAGE PRESSURE RECOVERIES (PERCENTAGE)

(a) Blade I

Source Pressure recovery

Entire span

1.20 inches from wall

i.O0 inches from wall

0.80 inches from wall

0.60 inches from wall

0.40 inches from wall

0.20 inches from wall

88.0

89.3

94.9

90.6

85.o
81.4

84.6

(b) Blade II

Source Pressure recovery

Entire span

1.13 inches from wall

0.93 inches from wall

0.73 inches from wall

0.53 inches from wall

0.33 inches from wall

0.13 inches from wall

87.6
84.8

90.5

89.5
81.3

87.4

90.1

(c) Blade III

Source

Entire span

1.13 inches from wall

0.93 inches from wall

0.73 inches from wall

0.53 inches from wall

0.33 inches from wall

0.13 inches from wall

Pressure recovery

87.8

85.8

85.6
84.6

87.1

9O.8

91.0

(d) Blade IV

Source Pressure recovery

Entire span
1.20 inches from wall

1.00 inches from wall

0.80 inches from wall

0.60 inches from wall

0.40 inches from wall

0.20 inches from wall

86.9

88.7
88.6

81.8

83.2

92.0
85.3
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Figure I.- Supersonic realm of vortex flow.



Figure 2.- Geometry of vortex field.
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Figure 3.- Charscteristic line network for supersonic vortex flow sccording

to A. Busemsnn. 7 = 1.40.
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Figure 4.- Construction of transition arcs.
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Figure 5.- Construction of typical symmetricsl blade section.
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(0) _e =14; v I ,0; Vu:28; 8 "120°_

(d] ve=lO; 't =0; _ =20; 8=I_ °.

(b)ve=14; ff =4; _j .24; 8=120_ (c) ='e=Hi, _': =8; Vu=20; 8 = 120=,

(f) Ye ,14; _ =0; ="u =28, 8=9C_
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Figure 6.- Examples of blades.
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Figure 8.- Variation of solidity with turning angle for general case.
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(a) Subsonic axial velocity component, external waves.

Figure 9-- Methods of increasing section thickness.
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(b) Flow geometry for external waves.

Figure 9.- Continued.
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Figure 9.- Concluded.
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Figure i0.- Diagram of flow in the channel at the instant immediately

before starting.



.42

.3s

.36

¢
O
,-4 .3_

.32

O

°]0
O
O

H

.28

.26

.24.1

determine_ _j geometric metho_

J

/

/
/

I
.1_0 l I Io_ • 7 _ .9 z.o

Radius ratio, su

Figure ii.- Value of Kma x as function of rsdius ratio for 7 = 1.40.



NACA RM L52B06 [IAL 51

i

i :

!

...._k_! ...._ L
hg I __ [ i

i t

I

•z_ 2 ....... L

iV .......

i

_]_ _! i
; I

\\
• ] .... _ _.

i I
.... __

..... i

I i -i
-U .......

_ J

I

4x4
J _: ,

t 1 * I .... I

' ,] .... --

_LL__..... _ _L]ZL]-__- -

2

_ ' ' a I t I -t !

Figure 12.- Reduction in maximum msss flow ss function of radius ratio

for 7 = I. 40.

___, •



J_'f,O.

cil];_l

36

321

28

24

]

oJ

o 20
>

t--

oJ
"o 16

E

E
'_ i2

4 / II f

oV

I ! I I ! " I i , l ! ! l _,

; _ I i T , , i/: _ ! ! ; i I I ! !: H_ _ i _ 8 °

: : Non,.startmg i //-, _J//_ ,.o

' i i j J i _ i i .i"I -'/ -_ :

' I i Iz/'_- _ L--_k-"-[_._-,--__-fJ,_ _ _L_'fr_l
i i i i _ /I" _ 4--_[ __l__J-q_ _/_i _Hi_ oo

] " / I I /I _i_ / / ' l i7

,z_ I i i ' , i I

_ ! I _ ! I I ! i I

'
4 8 12 16 eo 24 28 32 56 40 44 4.8 52

Convex surface property angle, uu

Figure 13.- Maximum design-inlet value of v e for starting as a function

of v I and v u.

k_n
bo

56 g_

k_

o
oh



_ _ ,,5_o6 _-__' 53

Figure 14.- Photo of 2¼- by 2-inch supersonic csscade tunnel.
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Figure 16.- Close up of blade I showing the static-pressure orifices and

scratches.
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Figure 18.- Concluded.
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(s) Total-pressure tube in place. L-727}6

Figure 19.- Schlieren photographs of the flow in the passage of blade I.
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(c) Flexible wall moved closer to trailing edge of blades.
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Figure 19.- Concluded. oo



(a) Ve = 140.
L-72739

Figure 20.- Schlieren photographs of the flow in the passage of
blade II.
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(a Passage not started, v e = 14 ° .
L-72741

Figure 21.- Schlieren photographs of the flow in the passage of

blade III.
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(b) Passage started. Ve = 18 ° .

Figure 21.- Concluded.
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Figure 23.- Schlieren photograph of the flow for an incorrectly spaced

pair of blades.
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